

GENERAL DESCRIPTION

The IS32LT3365A device is a compact, highly integrated solution with shunt dimming for large arrays of high-brightness LEDs in applications such as automotive matrix headlight system.

The IS32LT3365A device includes four groups of three switches in a series array for bypassing individual LED(s) in the string. These four groups can either independently manage four LED strings or be connected in series to manage one LED string, as well as paralleling up to four switches to bypass high current LEDs. Four on-board charge pump rails that can float up to 62V above GND provide the LED bypass switch gate drive. The low on-resistance (RDS(ON)) of the bypass switch minimizes conduction loss and power dissipation.

The pulse width and phase shift of PWM control are programmable for each individual LED in the string. The PWM frequency is adjustable via an internal register, and multiple devices can be synchronized to the same frequency and phase. The programmable slew rate of switch transitions and spread spectrum in PWM dimming operation can optimize the EMI performance.

UART communication interface compatible with CAN PHY (IS32LT3365A) are used for control and management by a host MCU.

For additional system reliability, the IS32LT3365A device features LED open/short and single LED short detection, over temperature protection, as well as fault reporting via an open drain dedicated reporting pin (FAULTB) and the communication interface.

The eLQFP-48 package features a feed-through topology to enable easy routing of signals on single-layer aluminum LED load boards.

QUICK START

Figure 1 IS32LT3365A Evaluation Board Photo

Figure 2 Power Board for IS32LT3365A

FEATURES

- Wide input voltage supply from 4.5V to 55V
- Functional Safety-Capable
 - Developed according to ISO26262 with process complying to ASIL-B
- UART interface
 - UART interface compatible with CAN physical layer, 100kbps~1Mbps baud rate
 - CRC to ensure robustness of communication
 - Support up to maximum 27 addressable devices
 - Watchdog timer to support fail-safe mode
- Embedded 12 LED bypass switches
 - Four groups of three series bypass switches
 - Maximum 20V across voltage on each switch
 - Maximum 55V from each switch to GND
 - Each switch up to 1.5A current capability
- Individual PWM dimming for each switch
 - 10-bit PWM duty cycle setting
 - Individual phase shift setting
 - Spread spectrum to optimize EMI
 - Programmable slew rate control
 - Programmable PWM frequency up to 30kHz
 - Device-to-device synchronization
- I²C master reading/writing EEPROM data for LED binning and calibration
- 10-bit ADC with two external MUXed inputs to support temperature monitor or LED binning
- · Fault protection with flag and reporting
 - Programmable fail-safe modes
 - LED string open/short detection
 - Single LED short detection
 - I²C communication error
 - Internal LDO overvoltage

- CRC error
- Programmable thermal alarm
- Thermal shutdown
- Dedicated fault reporting pin
- Operating junction temperature range (-40°C ~ +150°C)
- AEC-Q100 Qualified with Temperature Grade 1: -40°C to 125°C (IS32LT3365A-LQLA3-TR)
- AEC-Q100 qualification in process with Temperature Grade 1: -40°C to 125°C (IS32LT3365A-LQLCA3-TR)

- RoHS & Halogen-Free Compliance
- TSCA Compliance
- Thermally enhanced eLQFP-48 with exposed pad package

RECOMMENDED EQUIPMENT

• 12V, 2A DC power supply

ABSOLUTE MAXIMUM RATINGS

≤ 40V power supply

ORDERING INFORMATION

Part No.	Temperature Range	Package
IS32LT3365A-LQLA3-EB	-40°C ~ +125°C (Automotive)	eLQFP-48, Lead-free
IS32LT3365A-LQLCA3-EB	-40°C ~ +125°C (Automotive)	eLQFP-48, Lead-free

Table 1Ordering Information

For pricing, delivery, and ordering information, please contact Lumissil's analog marketing team at <u>analog@Lumissil.com</u> or (408) 969-6600.

PROCEDURE

The IS32LT3365A evaluation board is fully assembled and tested. Follow the steps listed below to verify board operation.

Caution: Do not turn on the power supply until all connections are completed.

Hardware Setup

Figure 3 Hardware Connection

- 1. Connect a 12V power supply to VIN1 and GND1 or connect 12V adapter to CN1 connector.
- 2. Connect the CN2 to CN4.

- 3. Connect the USB TO CAN Module to PC through the USB cable.
- 4. Connect the USB TO CAN Module to the CN3 connector through the XH2.54mm 3P wire.
- 5. Open JP1 to enable device IS32LT3365A.
- 6. Open JP6. Note that if a 5V host MCU is used for IS32LT3365A control, you should short JP6.
- Fail-safe mode Setting Fail-safe mode can be set by JP2 (See Table 2 jumper settings).

Resistor	Jumper Setting	Watchdog Timer	LED State
R49(10kΩ)	Closed	Invalid	-
R48(51kΩ)	Closed	Active	All LED Completely Off
R47(27kΩ)	Closed	Active	All LED on with 50% PWM duty cycle
R46(10kΩ)	Closed	Active	All LED on with fully brightness

Table 2 Fail-safe Mode Setting

 Device address Setting Device ID can be set by JP3(ADDR2), JP4(ADDR1) and JP5(ADDR0) using Table 3 jumper settings.

ADDR2 voltage	ADDR1 voltage	ADDR0 voltage	Device ID Byte (HEX)
0	0	0	20
0	0	3.3V	61
0	0	5V	E2
0	3.3V	0	A3
0	3.3V	3.3V	64
0	3.3V	5V	25
0	5V	0	A6
0	5V	3.3V	E7
0	5V	5V	A8
3.3V	0	0	E9
3.3V	0	3.3V	6A
3.3V	0	5V	2B
3.3V	3.3V	0	EC
3.3V	3.3V	3.3V	AD
3.3V	3.3V	5V	2E
3.3V	5V	0	6F
3.3V	5V	3.3V	F0
3.3V	5V	5V	B1
5V	0	0	32
5V	0	3.3	73
5V	0	5V	B4
5V	3.3V	0	F5
5V	3.3V	3.3V	76
5V	3.3V	5V	37
5V	5V	0	78
5V	5V	3.3V	39
5V	5V	5V	BA

 Table 3
 Device ID Setting

9. Fault Reporting

The fault protections include LED string open/short, single LED short, fail-safe mode, thermal alarm, thermal shutdown, CRC error, LDO overvoltage, I² C communication failure, Loopback verification failure, and so on. The FAULTB pin will go low when the device detects a fault condition. When FAULTB pin goes low, LED D3 will light up. Once the fault condition is removed and the corresponding fault bit is cleared, the FAULTB pin goes back to high impedance, and LED D3 will turn off.

Note: R19, R20 and D3 are not necessary for actual application.

10. Turn on the power supply and open the IS32LT3365 GUI on PC to control LED strings.

INSTRUCTIONS FOR IS32LT3365 GUI

1. INTRODUCTION

This chapter introduces how to use IS32LT3365 GUI tool to demonstrate/control IS32LT3365A evaluation boards.

			Device D Set	ting					Special CMD					Connect	Status
nibus Baud Rate:	100000	bit/s	Vaddr2 0V	Vadd	1 OV ~	Vaddr0	0V V Devi	ce ID 20	Synchronizatio	on R	egister Res	et Update	Bus Reset		Connected
CMD Output (Control Fail-	-Safe Mi	ode Control C)pen/Short	Detection	I2C Fun	ction ADC Fur	nction	Fault Status Fur	nction Co	nfiguration	Mesg Log] Broadcast		
	Tra	Insactio	n Frame:	//rite/Read	Read	~			Data	Length:	1	Dev_ID:0x 20	RegAddr:0x	0	
	Data 0:0x	0	Data 1:0x	0	Data2:0x	0	Data 3:0x 0		Data 4:0x 0	Data 5	0 0	Data 6:0x 0	Data 7:0x	0	
	Data 8:0x	0	Data 9:0x	0	Data10:0x	0	Data 11:0x 0		Data 12:0x 0	Data 1	3:0x 0	Data 14:0x 0	Data 15:07	0	
	Data 16:0x	0	Data 17:0x	0	Data18:0x	0	Data 19:0x 0		Data 20:0x 0	Data 2	1:0x 0	Data 22:0x 0	Data 23:07	0	
	Data 24:0x	0	Data 25:0x	0	Data26:0x	0	Data 27:0x 0		Data 28:0x 0	Data 2	9:0x 0	Data 30:0x 0	Data 31:00	0	
	CRC L:0x		CRC H:0	ĸ		Send									
	Read Bytes	s Log:													
														^	
														v	
													C	lear Log	

Figure 4 User Command Page

2. CONNECTION

USB to CAN Module supports micro-USB port, a micro-USB line can connect the Module to a computer for power supply and GUI support.

USB to CAN Module and IS32LT3365A evaluation board are connected via CAN bus.

The power supply for the power board is 12V.

Step 1: Connect evaluation board to the USB to CAN Module via CAN bus (CANH, CANL, GND).

Step 2: Connect input voltage connector to 12V.

Step 3: Connect the USB to CAN Module to the computer. At this time, the demo board LED starts to run mode.

Step 4: Open the GUI tool. The GUI tool will change the connection status from red to green. At this time, on the

evaluation board, all LEDs will be turned off.

Red: Evaluation board has no connection to the computer (refer to Figure 6).

Green: Evaluation board is already connected to the computer (refer to Figure 6).

	Device ID Setting		Special CMD				Connect Status
Lumibus Baud Rate: 100000 bit/	Vaddr2 0V Vaddr1 0V Vaddr0 0V Vox 0x	ivice ID 0x20	Synchronization	Register Reset	Update	Bus Reset	Not Connected
						Broadcast	
and the second second second second second second							
					78		
IS32LT3365 Demo GUI 202410	22						- 10
IS32LT3365 Demo GUI 202410	22 Device ID Setting		Special CMD		4		Connect Status
IS32LT3365 Demo GUI 202410 umibus Baud Rate: 100000 bit/s	22 Device D Setting Vaddr2 0V Vaddr1 0V Vaddr2	vice ID	Special CMD Synchronization	Register Reset	Update	Bus Reset	Connect Status Connected

Figure 6 GUI Tool Setting

3. GUI INTERFACE INTRODUCTION

3.1 Baud Rate Frequency Setting

Set Baud rate to 100000bps for IS32LT3365A (Refer to Figure 7, can support Baud rate range: 100kbps~1Mbps).

	_	Device ID Setting	with changes	Special CMD				Connect Status
mibus Baud Rate: 100000	bit/s	Vaddr2 0V \checkmark Vaddr1 0V \checkmark Vaddr0 0V \checkmark	0x20	Synchronization	Register Reset	Update	Bus Reset	Connected
							Broadcast	

Figure 7 Baud Rate Frequency Setting

3.2 Device ID Setting

Set the corresponding Vaddr2/Vaddr1/Vaddr0 according to the evaluation board setting (Refer to Figure 8, default setting Vaddr2=Vaddr1=Vaddr0=0V).

🚆 IS32LT3365 Demo GUI 2024102	2		– 🗆 X
Lumibus Baud Rate: 100000 bit/s	Device ID Setting Vaddr2 0V Vaddr1 0V Vaddr0 0V 0x20	Special CMD Synchronization Register Reset Update Bus Reset	Connect Status Connected
		Broadcast	

Figure 8 Device ID setting

3.3 Special Command (Refer to Figure 9)

Synchronization: Reset the TCNT counter to 0. Issued by broadcast to realize PWM software synchronization.

Register Reset: Resets all registers to default value, excluding the PWR bit in register 80h.

Update: Update the PWM WIDTH and PHASE register data into output stages at the next PWM boundary after this command is issued. Update the configuration of the PSON bit in 80h. Update the configuration of PARLED register in 71h. Quit from fail-safe mode to normal mode.

Bus Reset: Upon system power up, the host MCU must initialize the BUS by sending a BUS Reset Command before communication.

Broadcast: Broadcast to all IS32LT3365A devices. Broadcast only applies to writing commands.

🚆 IS32LT3365 Demo GUI 20241	022		– 🗆 X
Lumibus Baud Rate: 100000 bit	Device ID Setting /s Vaddr2 0V Vaddr1 0V Vaddr1 0V Vaddr1	Special CMD Synchronization Register Reset Update Bus Reset Broadcast	Connect Status Connected

Figure 9 Special Command

3.4 User Command Page

This page provides direct read and write operations of registers (refer to Figure 10).

3.4.1 Write or Read Select

- 3.4.2 Device Address: Control by Device Setting
- 3.4.3 Write or Read Data Length (1~16 or 32)
- 3.4.4 Write or Read Start Register Address
- 3.4.5 Write Data0~Datan (Prohibit Use During Read Operation)
- 3.4.6 CRC Data
- 3.4.7 Click the "Send" button to Send command

3.4.8 Record the data when using Read mode

🚆 IS32LT3365 Der	mo GUI 2024102	2							- 🗆 X
		Device ID Setting			Special C	MD		Connect	Status
Lumibus Baud Rate:	100000 bit/s	Vaddr2 0V 🗸	Vaddr1 0V Vaddr	0 0V ∨ Device ID 0x20	Synchro	nization Register Re	set Update I	Bus Reset	Connected
User CMD Output	Control Fail-Safe N	Iode Control Ope	n/Short Detection 12C Fi	unction ADC Function	Fault Status	Function Configuration	Mesg Log	Broadcast	
					_	3	2	4	
	Transacti	on Frame: Wri	te/Read: Read 🗸	1		Data Length: 1	Dev_ID:0x 20	RegAddr:0x	
	Data 0:0x	Data 1:0x 0	Data2:0x 0	Data 3:0x 0	Data 4:0x	Data 5:0x 0	Data 6:0x 0	Data 7:0x 0	
	Data 8:0x	Data 9:0x 0	Data10:0x 0	Data 11:0x 0	Data 12:0x	Data 13:0x 0	Data 14:0x 0	Data 15:0x 0	
5	Data 16:0x 0	Data 17:0x 0	Data18:0x 0	Data 19:0x	Data 20:0x	Data 21:0x 0	Data 22:0x 0	Data 23:0x 0	
	Data 24:0x 0	Data 25:0x 0	Data26:0x 0	Data 27:0x 0	Data 28:0x 0	Data 29:0x 0	Data 30:0x 0	Data 31:0x 0	
6	CRC L:0x	CRC H:0x	Send	7					
	Read Bytes Log:								
8									
								v	
GUI: V01B BC	DIS: V01A							Clear Log	

Figure 10 User Command Page

3.5 Output Control Page (Refer to Figure 11)

3.5.1 Group Select (Group1:00h~1Fh, Group2:20h~3Fh, Group3:40h~6Fh)

The PHASE and WIDTH register addresses are from 0x00 to 0x6F. There are 10-bit registers to control the phase shift and pulse width of the LEDs with respect to the PWM counter (TCNT). These registers are the PHASE and WIDTH registers, respectively. These registers may be written or read using three register map groups. These three map groups all communicate with a common set of registers internally. The data written into any map group will be synchronized into the other two map groups.

3.5.2 Slew rate control (70h)

The LED bypass switch gate drivers have variable slew rates, one setting per LED sub-string.

They are controlled via the SLEWRATE register, with a default value of 2us per channel.

SLEW_12_10: Slew rate setting for LEDs 10~12.

SLEW_09_07: Slew rate setting for LEDs 7~9.

SLEW_06_04: Slew rate setting for LEDs 4~6.

SLEW_03_01: Slew rate setting for LEDs 1~3.

3.5.3 PWM Frequency Setting (82h)

The recommended PWM frequency is in a range of 300Hz ~ 1kHz and the default PWM frequency (about 468Hz) is a good choice for most applications.

3.5.4 Channel Enable (78h~79h)

If any channel is unused, please set the corresponding bit to "0" to disable it. In a parallel switches configuration, if any parallel channel is unused, all corresponding bits must be set to "0".

3.5.5 WIDTH Control

The IS32LT3365A device offers 10-bit phase shiftable PWM dimming for each LED. The pulse width can be programmable for each individual LED in the string. For example, 1023=LED fully on (100% PWM duty cycle), 512=50% PWM duty cycle, 0=LED off.

3.5.6 PHASE Shift Control

The phase shift of PWM control is programmable for each individual LED in the string. The phase shift is applied to LED turn off times. The figure below shows examples of PWM width and phase shift implementation PSON=0, using values of PHASEx = 0 and 360 with WIDTHx = 600. In both cases, the WIDTHx value determines the LED on time (the switch off time).

Figure 11 PWM Width and Phase Shift implementation as PSON=0

3.5.7 Quick operation

"Enable All Width": if it is enabled, slide the slider on the right to set all channel's WIDTH value.

"Auto Send Update CMD": if enabled, and then click the "Write" button, it will send an update command automatically after the send write command, otherwise, you should send an update command every time after sending the write command.

Figure 12 Output Control Page

3.6 Fail-Safe Mode Page (Refer to Figure 13)

This state allows the user to preset the outputs' state if the communication is broken. The device integrates a communication watchdog timer that operates based on the system clock pulse. The tap point, programmed via the CMWTAP register (81h), defines the timing of the communication watchdog timer (25-bit counter). By default, the tap point is set to bit 22, which means the device requires 2^2 system clock cycles for the communication watchdog timer to time out. If the communication watchdog times out (no error-free communication is successfully received for the programmed number of system clock cycles), the device will enter fail-safe mode.

When $0V < VFSMD < VTH3_FS$, or RFSMD= $10k\Omega/27k\Omega/51k\Omega$, the internal communication watchdog is active, and the fail-safe mode is enabled. If the watchdog times out, the device will enter fail-safe mode, and the outputs will be determined by the DEFAULT PULSE WIDTH registers (72h~77h).

To switch from the fail-safe mode to normal mode, the host MCU must send an Update Command (special command) first and then write the CMWF bit in FAULT_TYPEL register (94h) to "0". The watchdog timer will be reset, and the FAULTB pin will return to a high impedance.

Note that the device must be re-initialized after quitting from the fail-safe mode to normal mode. Below table is the default value of 72h~77h when FSMD pin in different settings.

FSMD pin	Watchdog Timer	Default Value of DEFAULT PULSE WIDTH Registers (72h~77h)
$0V < V_{FSMD} < V_{TH1_FS}$ or $R_{FSMD} = 10k\Omega$		0xFF
$V_{TH1_FS} < V_{FSMD} < V_{TH2_FS}$ or $R_{FSMD} = 27 k\Omega$	Active	0x88
$V_{TH2}FS < V_{FSMD} < V_{TH3}FS$ or RFSMD=51k Ω		0x00
$V_{TH3}FS} < V_{FSMD} < 5.5V$ or connect FSMD to V5 via a 10k Ω resistor	Invalid	0x00

 Table 4
 Fail-safe mode Setting

IS32LT3365 Demo GUI 20241022 \times Device ID Setting Special CMD Connect Status Device ID Lumibus Baud Rate: 100000 bit/s Vaddr2 0V \checkmark Vaddr1 0V \checkmark Vaddr0 0V \checkmark Synchronization Register Reset Bus Reset Connected 0x20 Broadcast Fail-Safe Mode Control Open/Short Detection I2C Function ADC Function Fault Status Function Configuration Mesg Log User CMD Output Control Default Pulse Width(72h~77h) 0 0 DEFWIDTH07 \sim DEFWIDTH01 0 DEFWIDTH02 DEEWIDTH08 DEFWIDTH09 DEFWIDTH03 DEFWIDTH10 DEFWIDTH04 0 DEFWIDTH11 DEFWIDTH05 DEFWIDTH12 0 0 DEEWIDTH06 Write 72h~77h Read 72h~77h

Figure 13 Fail-Safe Mode Control Page

3.7 Open/Short Detection Page (Refer to Figure 14)

3.7.1 LED Open/Short Detect enable and detect threshold Setting (84h~8Fh)

a) "LEDx_OF_EN": LEDx Open Fault Detect Enable.

b) "LEDx SF EN": LEDx Short Fault Detect Enable.

c) LED Open Detect threshold can be set to 5V/10V/15V/20V, default is 20V.

d) LED Short Detect threshold can be set to 1V~16V, default is 1V.

e) The LED open fault is detected by an internal comparator monitoring the drain to source voltage (VDS) of the internal NMOS switch. In the event of an LED open failure, the drain to source voltage exceeds the detection threshold voltage, causing the corresponding NMOS switch to be turned on momentarily and sets the corresponding fault flag bit to "1".

f) The LED short fault is detected by another internal comparator monitoring the drain to source voltage of the internal NMOS switch. In the event of LED shorted failure, if the drain to source voltage drops below the detection threshold voltage, by the end of the LED ON phase, the detection circuit sets the corresponding fault flag bit to "1"

3.7.2 LED Open/Short Fault flag (90h~93h)

When there is an LED open or short fault event happened at any channel, the corresponding fault bit will be set to "1". Note that all these fault flag bits are latched. Even though the fault conditions are removed, they cannot automatically reset to "0" but must be cleared by the host MCU, writing them back to "0".

3.7.3 Fault Status Flag (94h)

- a) "LED Short": If any switch (LED) occurs short fault, this bit will be set to "1".
- b) "LED Open": If any switch (LED) occurs open fault, this bit will be set to "1".
- c) To clear these two bits, you should clear 90h~93h first.

mibus Baud Rat	te: 100000 bit/s	Vaddr2 0V V	/addr1 0V Vaddr0 0V	Device ID	Synchronization	Register Re	set Update	Bus Reset	Connected
er CMD Outp	ut Control Fail-Safe M	ode Control Open/S	Short Detection I2C Function	on ADC Function	Fault Status Function	on Configuration	Mesg Log) Broadcast	-
		1				2		3	
LED Op	ED Open Fault Enable	Fh) Detect Threshold	LED Short Fault Enable	Detect Threshold	LED Open	/Short Fault Flag D Short Fault	(90h~93h) LED Open Fault	Fault Types	s(94h) rt Normal m Normal
LED2	LED2_OF_EN	20V V	LED2_SF_EN		LED1 LED2	Normal	Normal		Read 94h
LED3 LED4	LED3_OF_EN LED4_OF_EN	20V ~ 20V ~	LED3_SF_EN LED4_SF_EN	1V ~ 1V ~	LED3	Normal	Normal		
LED5	LED5_OF_EN	20V ~	LED5_SF_EN	1V 🗸	LEDS	Normal	Normal		
LED6	LED6_OF_EN	20V ~ 20V ~	LED6_SF_EN LED7_SF_EN	1V ~ 1V ~	LED6	Normal	Normal		
LEDB	LED8_OF_EN	20V v	LED8_SF_EN	1V v	LED8	Normal	Normal		
LED9	LED9_OF_EN	20V ~ 20V ~	LED9_SF_EN	1V ~ 1V ~	LED9	Normal	Normal		
LED11	LED11_OF_EN	20V ~	LED11_SF_EN	1V ~	LED11	Normal	Normal		
0.012	CEDIZ_OF_EN	200 0	Write	Read	LED12 Clear 05	Normal S Fault	Normal Read OS Fault		

Figure 14 Open/Short Detection Page

3.8 I²C Function Page (Refer to Figure 15)

3.8.1 I²C Setting

- a) I²C enable: Enable I²C master.
- b) I2CCLK: Set I²C master clock frequency, default is 46kHz.
- c) EEPROM Start Addr: EEPROM Start Address
- d) I2C Config: I²C Configuration including I²C command and data length setting.
- e) I2C Slave ID: 7-bit slave ID of external EEPROM. This does not contain I2C read/write bit.
- f) I2C Communication Status: Flag bit used to indicate fault happened, see detail in datasheet.
- g) I2C BUS Monitor: used to monitor the SCL and SDA pins' status.

3.8.2 I2C Data (B0h~BFh)

These registers contain the data to be transmitted when in the Master Transmit state and the data received when in the Master Receive state.

	UNE VIE			-	-	
r CMD Output Control Fail-Safe Mode Control Open/Short Detection I2C	Function ADC Function	Fault Status Function	Configuration Me	sg Log	broadcast	
	1			2		
EC Setting System Config(80h) IC Enable ICC Enable ICCCLK(A9h) ICC ELC ICC CLK: 46.00Khz EEPROM Start Addr(AAh~ABh) EEPROM Start Addr: 0x 0000 EEPROM Start Addr Low Byte: 00 EEPROM Start Addr High Byte: 00 ICC Config(ACh)	ICC Slave ID(ADh) SlaveID: 0x ICC Communication Sti EEPROM Ready Flag ICC BUS Buay Flag: ICC Transmit Fault Flag ICC ACK Fault Flag: TX/RX Transmission ICC Bus Monitor(AFh) I2C SCL Si I2C SDA S	00 stus(AEh) ing. Normal Normal Data Error: Normal tatus: Low	dy Data Data Data Data Data Data Data Data	ata(B0h-BFh) a 1: 0x 00 a 2: 0x 00 a 3: 0x 00 a 4: 0x 00 a 5: 0x 00 a 6: 0x 00 a 6: 0x 00 a 8: 0x 00 b 6: 0x 00 b 7:	Data 9: 0x 00 Data 10: 0x 00 Data 11: 0x 00 Data 11: 0x 00 Data 11: 0x 00 Data 12: 0x 00 Data 12: 0x 00 Data 13: 0x 00 Data 14: 0x 00 Data 16: 0x 00 Read B0h~BFh 00	
EEPROM address length selection: 8-bt v I2C CMD: NA v Data Length: 1 v	Run I2C	Read I2C Regist	ers			

Figure 15 I²C Function Page

3.9 ADC Function Page (Refer to Figure 16)

3.9.1 ADC Configuration (99h~9Bh)

a) ADC Channel Enable: selects the desired input channels for ADC measurement.

b) ADC_EN: ADC Enable.

c) ADC CLK: ADC frequency setting.

d) ADC Sample: ADC sampling/hold time setting.

e) ADC Start: Start ADC measurement.

f) ADC Sampling Mode: If select the Single mode, all selected channels will be only measured once. If select the cycle mode, the ADC will repeat the measurement of all selected channels all the time.

g) ADC Times Average: For a more stable and precise result, each voltage is always sampled multiple times to calculate the average value.

3.9.2 ADC value (9Dh~A6h)

a) ADC_NTCH Value: The ADC result of NTCH pin.

b) ADC_NTCL Value: The ADC result of NTCL pin.

c) ADC_VPTAT Value: The ADC result of internal PTAT voltage. This result can be used to estimate the device junction temperature.

d) ADC_V5 Value: The ADC result of internal 5V LDO.

e) ADC_V33 Value: The ADC result of internal 3.3V LDO.

umibus Baud Rate: 100000 bit/s Vert	dr2 01/	Device ID Synchronizat	tion Register Reset U	date Bus Reset	Connected
Iser CMD Output Control Fail-Safe Mode C	Control Open/Short Detection I2C Function	0x20	unction Configuration Mesg L	Broadcas	
	1		2		
ADC Configuration ADC Channel Enable(99h) ADC Hanable NTCH Enable VPTAT Enable ADC_VS Enable ADC Config(9Ah) ADC_EN ADC CLK SYSCLK/16 ADC Sample Always Sar	ADC_V33 Enable ADC control(9Bh) ADC_V33 Enable ADC Start ADC Sampling Mode ADC Times Average mpling On ~	Single v 2 times v	ADC Value(9Dh-A6h) ADC_NTCH Value: ADC_NTCL Value: ADC_VPTAT Value: ADC_V5 Value: ADC_V33 Value:	HEX DE0 0 0 0 0 0 0 0 0 0 0	C Voltage 0.00V 0.00V 0.00V 0.00V 0.00V Read
	TTAN		J		

Figure 16 ADC Function Page

3.10 Fault Status Page (Refer to Figure 17)

3.10.1 Fault Types (94h~95h). Fault flag to indicate the various fault types.

- 3.10.2 Hardware Fault reporting setting (96h~97h). These registers determine whether to pull the FAULTB pin to low when the corresponding fault condition happens.
- 3.10.3 CRC Error counter (98h). This register value is incremented each time a CRC error is received.

Figure 17 Fault Status Page

3.11 Function Configuration Page (Refer to Figure 18)

3.11.1 PARLED (71h)

a) None: each string of bypass switches is independent of the others.

- b) S1//S2: sub-strings of S1 and S2 are connected in parallel, S3 and S4 are independent.
- c) S1//S2, S3//S4: sub-strings of S1 and S2 are connected in parallel, and S3 and S4 are connected in parallel
- d) S1//S2//S3//S4: sub-strings of S1, S2, S3, and S4 are all connected in parallel
- 3.11.2 OVER TEMP Threshold (7Ah)

Junction over temperature alarm threshold setting.

3.11.3 Spread Spectrum Config (7Bh)

When the spread spectrum function is enabled, the PWM frequency must be set to at least two times of the spread spectrum frequency to avoid flickering issue. Therefore, the default value of 125Hz (Typ.) is a good choice for most applications.

3.11.4 Master Slave Setting (7Ch)

The Master Slave Setting register is used to set the operating mode in the PWM synchronization operation of multiple IS32LT3365A devices. Disable external CLK pin when the device working at independent mode, enable external CLK pin when the device working at master or slave mode. To prevent the push-pull state of one device is shorted by push-pull or strong pulldown of other devices, please configure all devices to slave mode before one device to master mode.

- 3.11.5 System Config (80h)
 - a) I2C Enable: I²C Master Enable.
 - b) ACK Enable: if select ACK enables, acknowledge (0x7F) is transmitted following successfully received writes.
 - c) Phase Shift LED ON Enable: If select this, the LED phase shift apply to LED turn-on times. The configuration of this bit must be updated by the "Update Command".

- d) SYNC Output Enable: This bit can only be configured by a single device write command frame but not a broadcast command frame.
- e) SYNC Pulse Enable:

Selecting this setting enables the SYNC output to be powered with a 50% duty cycle pulse to synchronize with other IS32LT3365A device.

- f) Power Cycle Flag: This bit is reset to 0 upon power-up or EN pin toggling.
- 3.11.6 Communications Watchdog Time Out (81h)
- 3.11.7 LBIST state (C0h)

This device will perform a Logic Built-in Self-test upon UVLO being released.

3.11.8 IC Identification (C7h)

Read to this register address return the value 0xA1. This is intended to be used to identify an IS32LT3365A device.

- 3.11.9 Loopback Control (C1h~C4h)
 - a) Loopback Channel select: Select the channel for loopback verification.
 - b) Loopback verification function select: Select self-test mode or loopback test mode.
 - c) Loopback one channel mode: Keep verification on selected channel.
 - d) Loopback auto loop mode: Autoloop verification of all channels in turn.
 - e) Tolerance: Loopback comparison tolerance setting
 - f) Loopback Fault Flag: Loopback fault flag for each channel, when the comparison error exceeds the preset tolerance value, the corresponding fault flag bit will be set to 1.

Figure 18 Function Configuration Page

3.12 Message Log Page (Refer to Figure 19)

3.12.1 Communication Command Message Log

3.12.2 Clear Log: Clear Message Log

3.12.3 Save Log: Save Message Log to Excel

			 Device ID Settin 	g		Special CMD				Connect Status	-
bus	s Baud Rate: 1000	00 bit/s	Vaddr2 0V	Vaddr1 V Vaddr0	0V V Device ID 0x20	Synchronization	Register Reset Up	date Bus	Reset	Con	nected
								B	roadcast		
CN	MD Output Control	Fail-Safe M	ode Control Op	en/Short Detection I2C Fun	ction ADC Function	Fault Status Functio	n Configuration Mesg Lo	9			
	Cmd Frame Init	Device ID	Register Addr	01 02 03 04 05 06 07 08 09	10 11 12 13 14 15 16	17 18 19 20 21 22 23 2	4 25 26 27 28 29 30 31 3	CRC L	CRC H	Frame Type	Time
	80	20	00	00				28	0A	Master To Slave	10:59:44
	80	20	00	00				28	0A	Master To Slave	11:00:54
	80	20	00	00				28	0A	Master To Slave	11:02:00
	•										
	•									2	3

Figure 19 Message Log Page

4. EXAMPLE

Example 1: How to light up output channels 1/2/3 (PWM Duty cycle=50%)? Refer to Figure 20~21.

STEP 1: Check the connect status, green is OK, red is unconnected.

STEP 2: Setting Device ID.

STEP 3: Setting Baud rate (100kbps~1Mbps).

STEP 4: Send Bus Reset command.

STEP 5: Turn to the output control page and set PWM to 512 of output channels 1/2/3, then send the frame.

STEP 6: Send update command, then you can find LED channels 1/2/3 are light up with duty cycle=50%.

HIS32LT3365 Demo GUI 202410	4	1 - 🗆 X		
Lumibus Baud Rate: 100000 bit/s	Device ID Setting 2 Vaddr2 0V Vaddr1 0V Vaddr0 0V 0x20	Special CMD Synchronization Register Reset Update	Bus Reset	Connect Status Connected
f	·		Broadcast	

Figure 20 GUI Setting Page

	Device ID Setting		Special CMD		Connect Status
Lumibus Baud Rate: 100000 bit/s	Vaddr2 0V Vaddr1 0V V	Vaddr0 0V V Device ID 0x20	Synchronization	egister Reset Update Bus Re	eset Connected
User CMD Output Control Sail-Safe M	lode Control Open/Short Detection	I2C Function ADC Function	Fault Status Function Con	figuration Mesg Log	dcast
Group Select	Group 1(00h~1Fh)				
Group 1 Enable	All LEDs Enable	5	-	04 A C 5	
Group 2 Enable	LEDs Enable		1507	PHASE	1507
Group 3 Enable	LED1 Enable				
Slew Rate(70h)	LED2 Enable	512	0	0	480
SLEW_12_10 2us 🗸	LED3 Enable	LED2	LED8	LED2	LED8
SLEW_09_07 2us V	LED4 Enable	512	0	80	560
SLEW_06_04 2us ~	LED5 Enable	LED3	LED9	LED3	LED9
SLEW_03_01 2us ~	LED6 Enable	512	0	160	640
Write 70h Read 70h	LED7 Enable	LED4	LED10	LED4	LED10
	LED8 Enable	0	0	240	720
PWM Frequency Setting(82h)	LED9 Enable	LEDS	LED11	LED5	LED11
	LED10 Enable	0	0	320	800
PICNT PICNT	LED11 Enable	LED6	LED12	LED6	LED12
PWM Frequency: 468.75Hz	LED12 Enable	0	0	400	880
Write 82h Read 82h		Enable ALL WIDT	CH		
		0	Termanner		
		Auto Send Updat	ta CMD		5
					Write Read

Example 2: How to read 01h register of IS32LT3365A? Refer to Figure 22~23.

STEP 1: Check the connect status, green is ok, red is unconnected.

STEP 2: Setting Device ID.

STEP 3: Setting Baud rate (100kbps~1Mbps).

STEP 4: Send Bus Reset command.

STEP 5: Turn to User command page and select READ mode then input the value "01" to Register Address.

STEP 6: Send the frame and you can find data "50" is returned by IS32LT3365A.

🚆 IS32LT3365 Demo GUI 2024102	4	1 - 🗆 x		
Lumibus Baud Rate: 3100000 bit/s	Vaddr2 0V Vaddr1 0V Vaddr0 0V V	Special CMD Synchronization Register Reset Update	Bus Reset	Connect Status Connected
k			Broadcast	

Figure 22 GUI Setting Page

🙀 IS32LT3365 Demo GUI 20	241022		- 🗆 X
	Device ID Setting	Special CMD	Connect Status
Lumibus Baud Rate: 100000	bit/s Vaddr2 0V ~ Vaddr1 0V ~ Vaddr0 0V ~ 0x20	Synchronization Register Reset Update Bus Reset	Connected
		Broadcast	
User CMD Output Control Fai	Safe Mode Control Open/Short Detection I2C Function ADC Function	Fault Status Function Configuration Mesg Log	
5			
Tr	ansaction Frame: Write/Read: Read ~ 5	Data Length: 1 Dev_D:0x 20 RegAddr:0x	, 01 5
Data 0:0×	0 Data 1:0x 0 Data2:0x 0 Data 3:0x 0 D	Data 4:0x 0 Data 5:0x 0 Data 6:0x 0 Data 7:0	x 0
Data 8:0×	0 Data 9:0x 0 Data 10:0x 0 Data 11:0x 0 D	Data 12:0x 0 Data 13:0x 0 Data 14:0x 0 Data 15:	0x ⁰
Data 16:0>	0 Data 17:0x 0 Data 18:0x 0 Data 19:0x 0 Data	Data 20:0x 0 Data 21:0x 0 Data 22:0x 0 Data 23:0	0× 0
Data 24:02	0 Data 25:0x 0 Data 26:0x 0 Data 27:0x 0 D	Data 28:0x 0 Data 29:0x 0 Data 30:0x 0 Data 31:	0x ⁰
CRC L:0x	D8 CRC H:0x 3C Send 6		
Read Byte	s Log:		
Resp:00, .00,00,01 Resp:00, Register	20.50.98.3F.00.00.00.00.00.00.00.00.00.00.00.00.00	0,00,00,00,00,00,00,00,00,00,00,00,00,0	,05,00 🛋
			W
GUI: V01B BOIS: V01A		(Clear Log

Lumissil Microsystems – www.lumissil.com Rev. A, 01/21/2025

BILL OF LED BOARD

Name	Symbol	Description	Qty	Supplier	Part No.
-	TVS1, C18, C17, C3, C23, R5, R6, C2	NC	0		-
PCB	-	116mm × 63mm, FR-4, 4 layers, 1oz copper	1	-	-
LED Dimmer	U3	LED DIMMER	1	Lumissil	IS32LT3365A-LQLA3
Capacitor	C10, C16, C19, C21	CAP, 0.1µF, 0603, 50V, ±10%, SMD	4	Yageo	AC0603KKX7R9BB104
Capacitor	C9	CAP,10µF, 1206, 50V, ±10%, SMD	1	Yageo	AC1206KKX7R9BB106
Capacitor	C13, C14	CAP,1µF,50V, 0603, ±10%, SMD	3	Yageo	AC0603KKX7R9BB105
Capacitor	C1	CAP,4.7nF,0603,50V, ±10%, SMD	1	Yageo	AC0603KKX7R9BB472
Capacitor	C20	CAP,10nF,0603,50V, ±10%, SMD	1	Yageo	AC0603KKX7R9BB103
Capacitor	C3, C22	CAP, 1µF,0805,50V, ±10%, SMD	2	Yageo	AC0805KKX7R9BB105
Capacitor	C8, C11, C12, C15	CAP,0.1µF,0805,50V, ±10%, SMD	4	Yageo	AC0805KKX7R9BB104
Resistor	R18, R15	RES,1k, 0603, ±5%, SMD	2	Yageo	AC0603JR-071KL
Resistor	R16, R17	RES,3.3k, 0603, ±5%, SMD	2	Yageo	AC0603JR-073K3L
Resistor	R7	RES,3.9k, 0603, ±5%, SMD	1	Yageo	AC0603JR-073K9L
Resistor	R25	RES,5.1k, 0603, ±5%, SMD	1	Yageo	AC0603JR-075K1L
Resistor	R49, R11, R26, R46, R20, R19, R8	RES,10k, 0603, ±5%, SMD	7	Yageo	AC0603JR-0710KL
Resistor	R47	RES,27k, 0603, ±5%, SMD	1	Yageo	AC0603JR-0727KL
Resistor	R48	RES,51k, 0603, ±5%, SMD	1	Yageo	AC0603JR-0751KL
Resistor	R50, R51, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61	RES,0R, 0603, ±5%, SMD	12	Yageo	AC0603JR-070RL
Resistor	R1, R2	RES,62R, 0603, ±5%, SMD	2	Yageo	AC0603JR-0762RL
Resistor	R3, R4, R13, R14	RES,4.7k, 0603, ±5%, SMD	4	Yageo	AC0603JR-074K7L
EEPROM	U4	I ² C-Compatible (2-wire) Serial EEPROM	1	ATMEL	AT24C02C-SSHM-T
CAN Transceiver	U1	High-speed CAN transceiver	1	NXP	TJA1042T/3/1J
LDO	U2	HIGH CURRENT 1.3V TO 37V ADJUSTABLE VOLTAGE REGULATOR	1	MSKSEMI	LM317G-MS
LED	D3	RED LED, 0603, VF=3V	1	OSRAM	LS Q976-NR-1
LED	LED1~LED12	White LED, VF=3.3V, IF=700mA	12	HUAYI	C35W60-120

Bill of Materials, refer to Figure 24 above.

PCB LAYOUT OF LED BOARD

Figure 25 Top Layer

Figure 26 Second Layer

Figure 27 Third Layer

LUMISSIL

MICROSYSTEMS

IS32LT3365A HIGH-BRIGHTNESS LED DIMMER FOR AUTOMOTIVE LED ARRAY SYSTEM EVALUATION BOARD GUIDE

Figure 28 Bottom Layer

SCHEMATIC OF POWER BOARD

Figure 29 Schematic of Power Board

BILL OF LED BOARD

Name	Symbol	Description	Qty	Supplier	Part No.
IC	U1	ASYNCHRONOUS BOOST AND BUCK-BOOST VOLTAGE REGULATOR	1	Lumissil	IS32PM3510-ZLA3
IC	U2	CONSTANT-CURRENT LED DRIVER	1	Lumissil	IS32LT3961-ZLA3
DC power outlet	CN1	DC-005, 12V	1	CIKI	DC-005-A
Capacitor	C16, C15, C21, C29, C30, C31	CAP,10µF, 1210, 50V, ±10%, SMD	6	TAIYO YUDEN	UMK325AB7106KMHP
Capacitor	C12, C18, C19, C23	CAP,0.1µF,0603, 50V, ±10%, SMD	2	Yageo	AC0603KKX7R9BB104
Capacitor	C11, C14	CAP,10µF,1206, 50V, ±10%, SMD	2	Yageo	AC1206KKX7R9BB106
Capacitor	C10, C8	CAP,1µF,16V, 0603, ±10%, SMD	2	Yageo	AC0603KKX7R7BB105
Capacitor	C26	CAP,0.1µF,50V, 0805, ±10%, SMD	1	Yageo	AC0805KKX7R9BB104
Capacitor	C4, C5	CAP,4.7µF,50V, 0805, ±10%, SMD	2	Yageo	AC0805KKX7R9BB475
Capacitor	C7, C27, C28	CAP,22nF, 0603, 50V, ±10%, SMD	1	Yageo	AC0603KKX7R9BB223
Capacitor	C13, C17	CAP,10nF, 0603, 50V, ±10%, SMD	1	Yageo	AC0603KKX7R9BB103
РСВ	-	70mm × 54mm, FR-4, 4 layers, 1oz copper	1		-
-	TVS1, C24, R23, R17, C20, C6, C9, R25, C25, C22	NC			-
Resistor	R19, R22, R24	RES,0.05R,1206, ±1%, SMD	3	Yageo	PE1206FRF7W0R05L
Resistor	R14	RES,0.2R,1206, ±1%, SMD	1	Yageo	PT1206FR-070R2L
Resistor	R20	RES,1.3R,1206, ±1%, SMD	1	Yageo	AC1206FR-071R3L
Resistor	R6	RES,0R, 0603, ±5%, SMD	1	Yageo	AC0603JR-070RL
Resistor	R5	RES,120kR,0603, ±5%, SMD	1	Yageo	AC0603JR-07120KL
Resistor	R4, R9, R10, R11, R13, R1, R3	RES,10kR,0603, ±5%, SMD	7	Yageo	AC0603JR-0710KL
Resistor	R8, R16	RES,100kR, 0603, ±5%, SMD	2	Yageo	AC0603JR-07100KL
Resistor	R7	RES,390kR, 0603, ±5%, SMD	1	Yageo	AC0603JR-07390KL
Resistor	R18	RES,1kR, 0603, ±5%, SMD	1	Yageo	AC0603JR-071KL
Resistor	R15, R21	RES,10R, 0603, ±5%, SMD	2	Yageo	AC0603JR-0710RL
Resistor	R12	RES,680kR, 0603, ±5%, SMD	1	Yageo	AC0603JR-07680KL
Resistor	R2	RES,39kR, 0603, ±5%, SMD	1	Yageo	AC0603JR-0739KL
MOSFET	Q1	20A, 60V, NMOS	1	DIODES	DMN6040SK3-13
MOSFET	Q2	55A, 60V, NMOS	1	DIODES	DMNH6021SPSQ-13
Inductor	L3	22µH±20%, Isat≥5.55A, SMD	1	COILANK	AAPS10A40M220
Inductor	L4	220µH±20%, Isat≥1A, SMD	1	COILANK	AAPW07A45M221
Inductor	L2	4.7µH±20%, I _R =6.3A	1	Panasonic	ETQP5M4R7YFM
Inductor	L1	700Ω@100MHz, I _R =5A	1	TDK	ACM90V-701-2PL-TL00
Diode	D2	5A, 100V, Shottky diodes	1	DIODES	PDS5100H-13
Diode	D1	1A, 60V, Shottky diodes	1	DIODES	DFLS160-7
Diode	ZD1	DIODE ZENER 7.5V	1	DIODES	BZT52HC7V5WF-7

Bill of Materials, refer to Figure 28 above.

PCB LAYOUT OF POWER BOARD

Figure 30 Top Layer

Figure 31 Second Layer

Figure 32 Third Layer

Figure 33 Bottom Layer

CONDUCTED EMI PERFORMANCE

Test Conditions: VIN= 12V, VLED= 36V, ILED= 0.15A, ALL LED WIDTH= 512 (PWM DUTY CYCLE= 50%).

Test standard: CISPR-25 Class 5 conducted EMI (Blue: Peak scanning, Red: Average scanning).

Figure 34 CISPR-25 Class 5 Conducted EMI Scan VIN Line

Figure 35 CISPR-25 Class 5 Conducted EMI Scan GND Line

Copyright © 2025 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances

REVISION HISTORY

Revision	Detail Information	Date
А	Initial release	2025.01.21