

CAN FD Bus Transceiver with LDO

GENERAL DESCRIPTION

The IS32IO1163 is a CAN FD transceiver integrated with 5V LDO. The CAN FD transceiver meets ISO 11898-2/5 requirements and supports the low power mode specified in ISO 11898-6 with local/remote wakeup capability. The CAN FD allows up to 5Mbps data rate.

The built-in LDO is 5V and can supply up to 100mA external loads such as MCU, sensors, or actuators. IS32IO1163A is 5V I/O compatible (its VIO pin is internally shorted to V1). IS32IO1163B supports independent VIO through pin 5 and can be 3.3V IO compatible.

IS32IO1163 is in a standard eTSSOP-14 package.

APPLICATIONS

- Automotive
- Industrial Networks

FEATURES

- Battery voltage 6.3V to 32V
- Compliant to ISO 11898-2/5
- ISO 11898-6 low power mode with remote wakeup capability
- High-speed CAN FD data up to 5Mbps
- +/- 8KV HBM ESD for CANH/CANL pins
- Built-in LDO V1 to supply external circuits
 - 5V nominal output with typical +/- 3% accuracy
 - Supply up to 100mA
 - 150mA current limit
 - Under-voltage detection
- Optimized for low electromagnetic emission/ immunity (EME/EMI)

BLOCK DIAGRAM

- +/-12V wide range common mode range
- Bus connections are fully floating when BAT loses power
- VIO input allows 5V/3.3V IO interface
- Over temperature shut-down and recovery
- Bidirectional reset pin
- TSSOP-14 with exposed pad (eTSSOP-14) package
- ROHS & Halogen-Free compliant package
- TSCA compliance
- AEC-Q100 qualification
- IS32IO1163A VIO internal connects to V1
- IS32IO1163B Independent VIO pin

TOP VIEW EPAD should be connected to GND

Table of Contents

1.	PIN [Description	1
2.	Pin F	unctional Descriptions	
	2.1	Supply Pin (BAT)	2
	2.2	LDO5V Output Pin (V1)	
	2.3	Supply Pin (VIO)	2
	2.4	Ground Pin (VSS)	
	2.5	Reset Pin (RSTN)	2
	2.6	Mode Control Pin (STBN)	
	2.7	Transmit Data Pin (TXD)	
	2.8	Receive Data Pin (RXD)	
	2.9	Status Pin (CTS)	
	2.10	Bus Pin (CANH and CANL)	
3	Func	tion Descriptions	4
0.	3.1	Device Operation States	4
	3.2	CAN Operation States	4
	3.3	Remote Wakeup Detection	5
	3.4	TXD Normal Mode Entry and Dominant Timeout	5
	3.5	Loss of Supply and Ground	6
	3.6	Test Circuit	6
	3.7	HS-PMA Implementation Timing Diagram	6
4	Flect	rical Specifications	8
	4 1	Maximum Limits	8
	4.2	Thermal Characteristics	8
	4.3	DC Characteristics	8
	4.4	AC Characteristics	
5	Dack	aging Outline	12
J.	5 1		ביים דער איז
	5.1	511 Percommended I and Pattern	
		5.1.2 POD	
6.	Orde	ring Information	
_	-	· · · · · · · · · · · · · · · · · · ·	
7.	Revis	sions History	

List of Tables

1.	PIN Description	1
	Table 1-1 Pin Description	1

List of Figures

3.	Function Descriptions	4
	Figure 3-1 System controller state diagram	4
	Figure 3-2 CAN transceiver state machine	5
	Figure 3-3 CAN wake-up timing	5
	Figure 3-4 HS-PMA test circuit	6
	Figure 3-5 HS-PMA implementation timing diagram	6

1. PIN Description

PIN #	Name	I/O	Description
1	TXD	Ι	Transmit data input. TXD has an internal pull-up resistor to VIO.
2	GND	G	Ground power supply.
3	V1	O/P	5V LDO output, the output also serves as CAN transmit circuit supply.
4	RXD	0	Receive data output. Also indicates the remote wakeup status. RXD has an internal pull-up resistor to VIO in CAN offline and CAN offline bias modes.
5	RSTN	I/O	Reset input/output. RSTN is pulled low when V1 is under-voltage or over- temperature. If pulled down externally, the transceiver will be put in reset states. RSTN has an internal pull-up resistor to VIO.
6	CTS	0	Transceiver status. CTS=high when the transceiver is in normal mode and ready.
7	NC	-	No connection
8	NC	-	No connection
9	NC	-	No connection
10	BAT	Р	Positive supply +6.3V to +32V
11	NC/VIO	-/P	NC for IS32IO1163A and VIO is shorted internally to V1. VIO power for IS32IO1163B for 3.0V to 5.5V IO interface supply.
12	CANL	I/O	CAN bus low.
13	CANH	I/O	CAN bus high.
14	STBN	Ι	Standby control. STBN=0 puts the transceiver in the standby state. STBN has an internal pull-down resistor.

Table 1-1 Pin Description

2. Pin Functional Descriptions

IS32IO1163 integrates the physical layer function for conventional CAN and FD CAN bus applications. It is compliant with ISO 11898-2:2016.

2.1 Supply Pin (BAT)

BAT is the primary supply for the internal circuits and CAN bus front-end. It must be supplied with a voltage of 6.3V to 32V. The maximum BAT supply ramp up and down time during switching on/off should be less than 50ms to ensure correct reset behavior. If BAT is lost, the bus pins present no load on the bus.

2.2 LDO5V Output Pin (V1)

LDO5V is always enabled when BAT supply is present except in over-temperature conditions. V1 should have external decoupling capacitors of 1uF and 0.1uF. V1 supplies the CAN transceiver circuit during normal and CAN offline bias modes. In addition, V1 can provide up to 100mA for external circuits. When using V1 for external supply, the thermal impact must be taken into consideration especially at high BAT voltage as the heat dissipation increases linearly as BAT voltage increases.

V1 output has typical output accuracy of +/- 3% (4.85V to 5.15V). V1 has under voltage detection at 4.3V and that will force RSTN low if under voltage is detected.

2.3 Supply Pin (VIO)

VIO is used for interface logic supply. It can be supplied with a voltage less or equal to V1. In IS32IO1163A, VIO is shorted to V1 internally.

2.4 Ground Pin (VSS)

This is the negative supply.

2.5 Reset Pin (RSTN)

RSTN is a bi-directional open-drain pin and has an internal pull-up resistance to VIO. RSTN is forced low by IS32IO1163 when V1 is under-voltage or over-temperature. RSTN can also be forced to low externally. If RSTN=0, IS32IO1163 enters reset mode which causes CAN to enter CAN Offline state.

2.6 Mode Control Pin (STBN)

STBN controls the operation mode. STBN has an internal pull-down resistance.

If STBN=1, normal transceiver operation is enabled. STBN=0, the transceiver is in standby low power mode (includes CAN offline or CAN offline bias modes.). In standby mode, only the low-power receiver front-end is in operation to detect any remote wakeup event.

The transition time from standby to normal mode is around 80usec. External MCU should allow at least 100usec to start transmission when exiting standby mode.

2.7 Transmit Data Pin (TXD)

TXD is the input pin for transmitting data. TXD has an internal pull-up resistance to VIO.

TXD=1 is for recessive bus state and TXD=0 for dominant bus state. TXD=0 has a timeout mechanism to prevent rogue behavior. When transitioning from standby to normal mode, TXD=1 must be met first for further normal transmission of dominant output.

2.8 Receive Data Pin (RXD)

RXD is the output pin of receiving data.

RXD=1 reflects recessive bus state and RXD=0 for dominant bus state in normal mode.

In standby mode, only low-power receiver front-end is enabled and RXD is kept high. When a remote wakeup frame is detected, RXD is forced low and latched. Host can monitor RXD state during standby mode for detecting bus wakeup.

When transitioning from standby to normal mode, RXD may see output glitches due to output handover from a low-power receiver circuit to a high-speed receiver circuit.

2.9 Status Pin (CTS)

CTS indicates the status of CAN transceiver. CTS is high to indicate to host that the transceiver is in normal active mode that data can be transmitted and received to and from CAN bus. CTS is low when V1 is under-voltage or TXD=0 timeout in normal mode, and CTS is also low in standby mode.

2.10 Bus Pin (CANH and CANL)

CANH and CANL are CAN bus pins. Typically, the CAN bus is terminated at both ends with 120 Ohm termination resistors. And the effective 120 Ohm is implemented using two 60 Ohm in series with a center tap connected to a split voltage typically at 2.5V.

Within IS32IO1163, the CANH and CANL pins are also internally biased to VCM through two 15K Ohm resistors separately. VCM is ½ V1 in CAN active, VCM is ½VDD (internal 5V supply) in CAN offline bias mode, and VCM is 0V in CAN offline mode.

In normal operation (CAN active mode), when transmitting a dominant output, CANH and CANL are separately pulled up and down by current sources that produce positive voltage swing across CANH and CANL for dominant level. For recessive output, the current sources are both turned off, so CANH has the same level of CANL by the termination resistor. The driving of the current sources has edge rate control for better EMI performance. Both CANH and CANL have reverse-blocking diodes for isolation.

For CAN receive in normal operation, a high-speed receiver detects a single-end threshold (0.5V to 0.9V) of (CANH-CAHL) to determine if the bus is in the dominant state. The receiver output is then sent to RXD buffer.

In standby mode (CAN offline and CAN offline bias modes), the transmitter and the high-speed receiver are disabled to save power. A low-power receiver is active in the standby mode with similar characteristics for the purpose of detecting wake-up events on the bus.

3. Function Descriptions

3.1 Device Operation States

IS32IO1163 operation can be described in the following simple state diagram consisting of only four states, Normal (NRM), Standby (STB), Reset (RST), and Over-temperature (OT) states.

Figure 3-1 System controller state diagram

IS32IO1163 is in the normal state when the transceiver is ready for operation. Standby state is a power conservation mode that only the low-power receiver is active to detect remote wakeup. Transition between normal state and standby state is by STBN input level.

IS32IO1163 enters reset mode whenever RSTN is 0. There are several conditions or events resulting in RSTN=0, which include under-voltage, over-temperature, as well as forced low externally. When these conditions are absent, IS32IO1163 exits reset state to normal or standby states depending on STBN input. Both receive and transmit functions of the transceiver are disabled in reset state. When exiting reset state, RSTN=0 is always extended by 20 to 25msec.

If over-temperature occurs, all states transit to the over-temperature state. In this state, V1 and the transceiver functions are disabled to reduce power consumption, and RSTN is also pulled low. IS32IO1163 remains in OT state under over-temperature conditions. Recovering from over-temperature state, IS32IO1163 enters to reset state and then transits to NRM or STB states when RSTN is released from low.

Please note the state machine is clocked by an on-chip 100KHz oscillator. The transition time between states can take up to 80usec considering the enable/disable settling time of the analog circuits.

3.2 CAN Operation States

IS32IO1163 implements ISO 11898-6 low power mode with remote wake-up capability. This can be described by the following state diagram. Please note this state machine is supervised by the device operation states. In essence, CAN ACTIVE is only possible in NRM state, and CAN OFFLINE/CAN OFFLINE BIAS are under STB state, while RST and OT states correspond to CAN OFF.

CAN active state is the normal operational state. In this state, the transceiver is enabled and both highspeed receiver and transmitter are enabled. There is a CAN activity timer that monitors CAN bus idle time out for $T_{SILENCE}$. This timer is enabled in CAN active and CAN offline bias states and disabled in CAN offline and off states. If STB=1, depending on $T_{SILENCE}$ flag, CAN active state transits to either CAN offline bias or offline state.

CAN offline state is the low-power state that only the low-power receiver front-end is enabled to detect remote wakeup conditions. If remote wakeup is detected, RXD is forced low and transits to CAN offline bias state.

CAN offline bias state is an intermediate state between CAN offline and CAN active state. When entering from CAN active state if STB=1 and < $T_{SILENCE}$, CAN offline bias state presides until $T_{SILENCE}$ is expired and then transits to CAN offline state. Similarly, CAN offline bias state is entered from CAN offline state after wakeup is detected. It only stays in CAN offline bias state for $T_{SILENCE}$ then back to CAN offline state unless STB is low.

CAN off state is a safe state that is destined from all other states if RST or OT condition occurs. It remains in CAN off state unless RST and OT conditions are removed. In this state, V1 is off, the transceiver is disabled, and CANH/CANL bus pins are forced into a floating state avoiding any load to the bus. When RST or OT is not present, CAN off state always transits to CAN offline state.

Figure 3-2 CAN transceiver state machine

3.3 Remote Wakeup Detection

In both CAN offline or offline bias states, only the low-power receiver front-end is enabled for detecting the bus wake-up pattern as defined in ISO 11898-2:2016 Figure 11 state diagram. The bus signal needs to have two consecutive dominant states with a recessive state in between as shown in the following wakeup pattern timing diagram. The duration of these dominant and recessive states must be longer than T_{WU} . This pattern must be met within T_{WUTO} , otherwise, the pattern detection is nullified and restarts detection.

Figure 3-3 CAN wake-up timing

When the wake-up pattern is detected, RXD output is pulled low to inform the host. RXD remains low until IS32IO1163 enters CAN active state.

3.4 TXD Normal Mode Entry and Dominant Timeout

To prevent accidentally transmitting dominant state onto the bus when entering CAN active state as the transmitter is turning on, TXD must be first 1 to enable the transmission. In other words, if TXD is 0 entering CAN active state, the corresponding dominant state is not entered. The driver is then enabled when a TXD=1 event is seen.

In CAN active state, if TXD is 0 continuously exceeding $T_{DOM,TO}$, the driver is also disabled while remaining in CAN active state. This is to prevent rogue behavior from interfering with normal bus operation. The timeout condition is cleared if TXD=1 is detected.

3.5 Loss of Supply and Ground

In the events of losing supply or ground, the transceiver presents no load to the bus. This is accomplished by the isolation diodes at the transmitter driver output. The bus still sees a differential resistance of around 40K Ohm due to the receiver biasing network, however, there is minimum DC leakage path to supply or ground.

3.6 Test Circuit

Figure 3-4 HS-PMA test circuit

- VDIFF Differential voltage between CANH and CANL.
- V_{CANH} Single-end voltage on CANH.
- VCANL Single-end voltage on CANL.
- R_L Bus load resistance. 60 Ohm unless otherwise specified.
- C1 4.7nF unless otherwise specified.
- C2 100pF unless otherwise specified.
- C_{RXD} 15pF unless otherwise specified.

3.7 HS-PMA Implementation Timing Diagram

Figure 3-5 HS-PMA implementation timing diagram

 $T_{BIT, TXD} = 1000ns \text{ for 1Mbit/s}$ $T_{BIT, TXD} = 500ns \text{ for 2Mbit/s}$ $T_{BIT, TXD} = 200ns \text{ for 5Mbit/s}$

4. <u>Electrical Specifications</u>

4.1 Maximum Limits

Parameter	Conditions	MIN	MAX	Unit		
	Pin BAT	-0.3	40	V		
	Pin V1	-0.3	6	V		
Voltago on Din	Pin VIO	-0.3	5.5	V		
Voltage on Fin	PIN RXD, TXD, CTS, STBN, RSTN	-0.3	VIO	V		
	Pin CANH, CANL	-27	40	V		
	VDIFF = V(CANH) - V(CANL)	-5	10	V		
	НВМ					
	Pin CANH, CANL *1	-8	+8	kV		
	Pin BAT	-4	+4	kV		
	at any other pin	-2	+2	kV		
ESD Rating	MM					
	Any Pin	-200	+200	V		
	CDM					
	Corner Pins	-750	+750	V		
	Any Pin	-500	+500	V		
Junction Temperature		-40	+150	°C		
Storage Temperature		-55	+150	°C		

Note *1: BAT, V1/VIO, and GND are tied to the ground.

4.2 Thermal Characteristics

Symbol	Parameter	Conditions	ТҮР	Unit
RTHJA	Thermal resistance from junction to ambient	TSSOP-14 package free air	60	°C/W

4.3 DC Characteristics

 V_{BAT} = 6.3V to 32V. T_J = -40 $^\circ\!\mathrm{C}$ to +150 $^\circ\!\mathrm{C}.$ V(CANH) and V(CANL) within +/- 12V.

Typical values are given at $V_{BAT} = 13V$, $V_{V1}=5V$, and $V_{V10}=V_{V1}$ unless otherwise specified.

Refer to Section 2.6 for the test circuit with typical values of $R_L=60\Omega$, $C_1=4.7nF$, $C_{RXD}=15pF$ used.

All voltages are defined with respect to VSS or ground.

Symbol		Paramete	r	Conditions	Min	TYP	Max	Unit
Pin BAT, V1 and VIO								
V _{BAT}	Supply voltage				6.3	13	32	V
VBAT, PON	Supply v	oltage, pov	wer on	100msec ramp up/down time	4.8	5.3	5.8	V
Ibat, act, rec	Supply mode	current,	normal	Recessive output, V1 no load.	3.0	4.5	6.0	mA
Ibat, act, dom	Supply mode	current,	normal	Dominant output, V1 no load, R_L =60 Ω	30	42	55	mA
IBAT, STB,32V	Supply mode	current,	standby	$I_{V1} = 0$, input at default states	60	82	170	μA
IBAT, STB,13V	Supply mode	current,	standby	$I_{V1} = 0$, input at default states	50	72	140	μA
Vv1, No load	V1 outpu	ut voltage		VBAT = 13V, Iv1 = 0.	4.75	5.0	5.25	V

Currente e l	Devenueden	Que ditions	Min	TVD	Mari	11
Symbol	Parameter	Conditions	MIN	ITP	wax	Unit
Vv1, 100mA	V1 output voltage	V _{BAT} = 13V, I _{V1} = 100mA.	4.60	4.9	5.10	V
Vv1, UVD	V1 under voltage detect		3.7	4.2	4.5	V
Vv1, UVH	V1 under voltage release hysteresis		-	0.2	-	V
Iv1, output	V1 output current	V _{BAT} = 13V, without UVD	-	150	-	mA
Iv1, sc	V1 short-circuit current	V1 short to 0V, $V_{BAT} = 6.3V$	160	230	300	mA
VIO	IO supply voltage	For IS32IO1163B only	2.9	-	5.25	V
Ινιο	VIO Supply current	V _{V1} = 5.0V, input default states	-	20	40	μA
Pin STB, T	XD, RXD, CTS, RSTN					
Vih	Logic input high voltage	STBN, TXD, RSTN pins	0.7V _{IO}	-	-	V
VIL	Logic input low voltage	STBN, TXD, RSTN pins	-	-	0.3VIO	V
V _{OH, RXD,} cts	Logic output high voltage	RXD, CTS pin, I _{OH} = -2mA	V _{IO} – 0.5	-	-	V
Vol, rxd, cts	Logic output low voltage	RXD, CTS pin, Io∟= 4mA	-	-	0.5	V
Vol, rstn	Logic output low voltage RSTN	RSTN pin, Io∟= 2mA	-	-	0.8	V
RPD, STBN	Pull down resistor STBN		35	65	85	KΩ
Rpu, txd	Pull up resistor TXD		35	65	85	KΩ
R _{PU, RXD}	Pull up resistor RXD		60	80	110	KΩ
RPU, RSTN	Pull up resistor RSTN		35	65	85	KΩ
Bus CANH/	/CANL					
RDIFF	Differential Input Resistance		20	30	40	KΩ
RCAN	Single-end Resistance		10	15	20	KΩ
MCANR	Matching of Resistance		-2	0	+2	%
CCAND	Differential Capacitance	*1	-	10	-	pF
CCANS	Single-End Capacitance	*1	-	8	-	рF
ICANLK, LP	Bus Leakage Current, loss of power	V(CANH)=V(CANL)=5V, BAT=V1=VIO=GND=0V or short to 0V through 47KΩ	-10	-	+10	μΑ
Bus Receiv	e					
VTHNRM	Normal mode threshold	-12V <= V(CANH) <= +12V -12V <= V(CANL) <= +12V	0.5	-	0.9	V
VHYSNRM	Normal mode hysteresis	-12V <= V(CANH) <= +12V -12V <= V(CANL) <= +12V	50	85	125	mV
Vrec,nrm	Normal mode recessive differential input voltage	V(CANH) – V(CANL) -12V <= V(CANH) <= +12V -12V <= V(CANL) <= +12V	-3.0	-	0.5	V
Vdom,nrm	Normal mode dominant differential input voltage	V(CANH) – V(CANL) -12V <= V(CANH) <= +12V -12V <= V(CANL) <= +12V	0.9	-	8.0	V
VTHSTB	Standby mode threshold	V(CANH), V(CANL) within +/-12V	0.4	-	1.15	V
V _{REC,STB}	Standby mode recessive differential input voltage	V(CANH) – V(CANL) -12V <= V(CANH) <= +12V -12V <= V(CANL) <= +12V	-3.0	-	0.4	V

Symbol	Parameter	Conditions	Min	ТҮР	Max	Unit
V _{DOM} ,stb	Standby mode dominant differential input voltage	V(CANH) – V(CANL) -12V <= V(CANH) <= +12V -12V <= V(CANL) <= +12V	1.15	-	8.0	V
VCANCM	Common mode voltage range		-12	2.5	12	V
Bus Transn	nit					
Vout, recn	NRM mode Recessive CANH/CANL output voltage	R _L not present	0.45	0.5	0.55	V1
Voutd, recn	NRM mode Recessive Differential Output Voltage	R⊾ not present	-50	0	50	mV
IOUT, RECN	NRM Recessive Current	CANH=CANL= +32V to -15V, R∟ = 50Ω - 65Ω	-5	0	5	mA
Vouth, dom	CANH dominant single-end output	$R_L = 50\Omega - 65\Omega$	2.75	3.6	4.50	V
Voutl, dom	CANL dominant single-end output	R _L = 50Ω - 65Ω	0.50	1.4	2.25	V
Voutd, dom	Dominant output differential swing	Vouth,dom - Voutl,dom RL = $50\Omega - 65\Omega$	1.50	2.2	3.00	V
Voutd, dom, arb	Dominant output differential swing, arbitration	Vouth,dom - Voutl,dom RL = 2240 Ω	1.50	3.8	5.00	V
Sout, dom	Dominant output symmetry	V1 - (Vout,canh + Vout,canl) RL = 50Ω - 65Ω	-0.50	0	0.50	V
Vsym	Driver symmetry	$R_L = 60\Omega$, C ₁ =4.7nF 1MHz square wave	0.9	1	1.1	-
IOSCH, DOM	CANH dominant output short-circuit current	V(CANH) = 0V	-	50	80	mA
I _{CANH, MAX}	CANH output maximum current	V(CANH) = -3V to 18V	-	-	115	mA
IOSCL, DOM	CANL dominant output short-circuit current	V(CANL) = 5V	-	50	80	mA
I _{CANL, MAX}	CANL output maximum current	V(CANL) = -3V to 18V	-	-	115	mA
Vout, recs	STB mode Recessive CANH/CANL output voltage	R _L not present	-0.1	0	0.1	V
Voutd, recs	STB mode Recessive Differential output Voltage	R _L not present	-100	0	100	mV
Thermal Pr	otection					
T _{JOTS}	Shutdown temperature	*1	-	175	-	°C
Tjotr	Recovery temperature	*1	-	145	-	°C

Note 1: Not tested. Guaranteed by design and characterization.

4.4 AC Characteristics

VBAT = 6.3V - 32V, TJ = $-40^{\circ}C$ to $+150^{\circ}C$. V(CANH) and V(CANL) within +/- 12V.

Refer to Sections 2.6/2.7 for the test circuit with typical values of RL= 60Ω , C1=4.7nF, CRXD=15pF used and timing waveform.

Typical values are given at VBAT = 13V unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ΤΥΡ	MAX	Unit
Timing Characteristics						
TBAT, RAMP	Battery ramp up/down time	*1	-	-	50	ms
TCOLD START	Cold startup Delay	VBAT >= 6.3V startup	-	25	35	ms

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
TWARM START	Warm startup Delay	RSTN startup	1.0	1.3	1.6	ms
T _{RSTN}	Reset extension time	RSTN applied externally	15	20	25	ms
T _{PD,RX}	Receive Propagation Delay	$V_{CANCM}=2.5V, V_{CANDF}=1.5V$ $C_{RXD} = 15 \text{ pF}$	-	90	-	ns
Tsym, rx	Receive propagation delay mismatch	Recessive bit time distortion. *1	-20	-	+5	ns
T _{PD,TX}	Transmit Propagation Delay		-	60	-	ns
TPDMS, TX	Transmit propagation delay mismatch	Recessive bit time distortion. *1	-25	-	+5	ns
TLOOP	Loop delay	$ \begin{array}{l} {\sf R}_{\sf L} = 60 \; \Omega, \; {\sf C}_1 {=} 4.7 {\sf n} {\sf F}, \\ {\sf C}_2 = 100 \; {\sf p} {\sf F}, \; {\sf C}_{\sf RXD} = 15 \; {\sf p} {\sf F} \end{array} $	80	130	180	ns
TBIT BUS, 2M	Transmitted recessive bit width 2Mbps	$R_L = 60 \ \Omega, \ C_2 = 100 \ pF.$ *1	435	-	530	ns
TBIT RXD, 2M	Received recessive bit width 2Mbps		400	-	550	ns
ΔT bit RXD, 2M	Received timing symmetry 2Mbps T _{RXD,DOM} – T _{RXD,REC}	$ R_L = 60 \ \Omega, \ C_2 = 100 \ pF \\ C_{RXD} = 15 \ pF. \ *1 $	-65	-	40	ns
TBIT BUS, 5M	Transmitted recessive bit width 5Mbps	$R_L = 60 \Omega$, $C_2 = 100 pF$. *1	155	-	210	ns
TBIT RXD, 5M	Received recessive bit width 5Mbps	$R_L = 60 \Omega, C_2 = 100 pF,$ $C_{RXD} = 15 pF. *1$	120	-	220	ns
ΔT віт RXD, 5М	Received timing symmetry 5Mbps T _{RXD,DOM} – T _{RXD,REC}		-45	-	15	ns
Тоом, то	TXD dominant time-out time		1.8	2.7	4.0	ms
Twu	Wakeup Filter Time	VCAN,CM=0V, VCAN,DIFF=1.2V	0.5	1.5	3.0	μs
Т _{wuтo}	Wakeup detection timeout		500	700	1000	μs
TSILENCE	Bus silence time		0.65	0.95	1.2	S
T _{TRANS}	State detection and transition, bias-on times	EN to CTS delay	-	180	220	μs

Note *1: Not tested. Guaranteed by design and characterization.

5. Packaging Outline

5.1 eTSSOP-14

5.1.1 Recommended Land Pattern

5.1.2 POD

DETAIL 'A'

SYMBOL	MILLIMETER			
STNDOL	MIN	NOM	MAX	
А	—	—	1.20	
A1	0.00	—	0.15	
A2	0.80	0.90	1.05	
D	4.90	5.00	5.10	
D1	1.70	—	—	
Е	4.30	4.40	4.50	
E1		6. 40BSC		
E2	1.50	—	—	
E2 L	1.50 0.45	0.60	0.75	
E2 L b	1.50 0.45 0.19	0.60	0. 75 0. 30	
E2 L b S	1.50 0.45 0.19 0.20	0.60	0. 75 0. 30	
E2 L b S c	1.50 0.45 0.19 0.20 0.09	0.60	0.75	
E2 L b S c θ	1.50 0.45 0.19 0.20 0.09 0°	0.60	0.75 0.30 0.20 8°	

NOTE:

- 1. The thermal pad shows different shape among different factories.
- 2. Controlling dimension: mm
- 3. Reference document: JEDEC MO-153

6. Ordering Information

Temperature Range: -40°C to 125 °C

Order Part No.	Package	QTY/Reel	Remark
IS32IO1163A-ZLA3-TR	TSSOP-14 with exposed pad, Lead-free	2500	VIO internal connects to V1
IS32IO1163B-ZLA3-TR	TSSOP-14 with exposed pad, Lead-free	2500	Independent VIO pin

Copyright © 2025 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assumes all such risks; and

c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances.

7. <u>Revisions History</u>

Revision	Detailed Information	Date
А	Production Release	2023.06.13
В	Removed FCDFN-24 Package Type Options	2025.03.11